

パンデミックを 制圧するために

2019年末から世界的に感染が拡大した新型コロナウイルス感染症(COVID-19: coronavirus disease 2019)。北海道大学ではいち早く、医学、薬学、工学、化学などの分野で先進的なCOVID-19研究に 取り組み、その成果は世界のコロナ感染症対策に大きく貢献しています。

唾液によるPCR検査を開発、安全簡便な新型コロナ検査法を普及させた

安全で簡便な PCR検査の確立

新型コロナウイルスの感染爆発を 防ぐには、濃厚接触者など無症状者か ら新型コロナウイルス感染者を発見 し、感染伝播をブロックすることが重 要です。感染の有無は鼻咽頭ぬぐい 液(スワブ)を用いたPCR検査で判定 されます。しかし、スワブ検査の実施 は、医師、看護師、臨床検査技師等に 限られ、感染リスクもあり、感染防御具 や採取場所が必要など課題が多く、よ り安全で簡便な検体採取法の確立が 求められていました。

北海道大学大学院医学研究院の豊 嶋崇徳教授らの研究グループは、 2020年4月より全国に先駆けて唾液 によるPCR検査法の研究を開始、唾液 検体がスワブと同等の検査精度をも つ可能性を示し、厚生労働省も唾液に よるPCR検査を認めました。

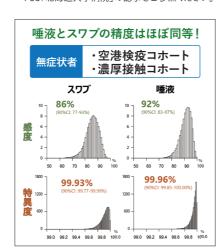
唾液採取カップ 写真提供:北海道大学豐嶋教授

感染拡大の原因である 無症状者からの感染者発見が 唾液PCR検査で可能であることを 世界最大規模の研究によって証明

感染拡大を防ぐには無症状者から 感染者をいかに発見するかが課題で した。これまで、無症状者における唾液 PCR検査の精度は明確ではありませ んでした。豊嶋教授らの研究グループ は、約2,000例という過去世界最大規 模の研究によって無症状者における 唾液とスワブとの診断精度を比較。そ の結果、唾液もスワブとほぼ同等の精 度を示し、信頼できる検査であること を明らかにしました。

唾液を用いた 検査時間短縮の試み

唾液検査の導入によって検査の導 入は簡単になりましたが、次の課題は 検査時間の短縮でした。豊嶋教授らの 研究グループは、産学共同研究により 短時間で結果が判明するさまざまな検 査法の唾液検査の精度を検証し、さま ざまな局面に応じて多様な検査法が 選択できることを可能としました。


北海道大学病院では全国に先駆け

医学研究院 教授 豊嶋 崇徳

て入院前の唾液PCR検査を開始しまし た※。安全・簡便な唾液採取は無症状 者のスクリーニング検査の標準法とし て推奨できることから、空港検疫や航 空機搭乗前検査に採用されました。ま た民間検査の扉を開くこととなり、一 般市民も気軽に検査を受けることが可 能となる社会変革をもたらした大きな 社会貢献になりました。

※北大病院での唾液によるPCR検査については P33「北海道大学病院」の記事をご参照ください。

下水から新型コロナウイルスのRNAを初検出、下水疫学の概念を提唱し実証した

工学研究院 准教授 北島正章 KITAJIMA Masaaki

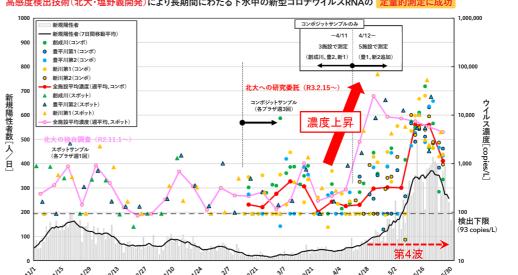
下水中のウイルス検出で 感染流行の実態を把握

工学研究院環境工学部門の北島正 章准教授は「下水疫学」の観点から新 型コロナウイルス感染症の流行状況を 把握する技術の開発に取り組んでいま す。下水疫学とは下水中のウイルス等 を検出し、そのデータから感染流行状 況の推定や人々の健康状態の評価な どを行う研究分野です。ノロウイルスや ポリオウイルスなどに対して先行事例 があることから、新型コロナウイルスに ついても下水疫学調査が適用できると 考え、2020年4月、海外の研究者と共 同で下水中の新型コロナウイルスに関 する世界初の総説論文を発表。その

後、国内や北米の下水試料から初の新 型コロナウイルスRNA検出に成功して います。

下水疫学による流行の 早期検知に期待

北島准教授のグループは札幌市内 の下水処理場からサンプルを採取し、 下水中の新型コロナウイルスRNAの定 量的測定を実施しています。その結果、 2021年4月以降の新規感染者の上昇 と下水中のコロナウイルス濃度の変動 パターンに類似性を確認することがで き、下水疫学調査により感染流行状況 を把握できる可能性が認められました。 さらに、東北大学との共同研究により下 水中の新型コロナウイルス濃度から感 染者数を推定する数理モデルを構築。 このモデルを東京都の下水に適用した ところ、北島准教授が塩野義製薬と共 同で開発した高感度検出手法が、もし 2020年から使用可能であれば第1波と 第2波の比較的初期に検出可能であっ たことが示唆されています。


これらの研究結果をもとに、今後は下 水疫学調査の社会実装を進め、新型コ ロナウイルスのみならず、未知のウイル スや新たな感染症の発生をいち早く発 見し、感染予防の対策に役立てる社会 インフラとしての確立を目指しています。

●下水疫学調査の流れ

●札幌市での官学連携による実証実験

高感度検出技術(北大・塩野義開発)により長期間にわたる下水中の新型コロナウイルスRNAの 定量的測定に成功

新規感染者と 下水中新型コロナウイルスRNA濃度の 変動パターンが類似

下水中ウイルス濃度の不均一性に起因する非 検出や測定値のばらつきも認められるため、下 水データの解釈については引き続き調査研究に より検討する必要がある。

HOKKAIDO UNIVERSITY FINANCIAL REPORT 2021

HOKKAIDO UNIVERSITY FINANCIAL REPORT 2021 13